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o-Pyridinylpyrrolesl and their reduced derivatives, pyrrolidines ~ Table 1. Palladium-Catalyzed Reactions of o-Acetylpyridine 4a
2, have attracted considerable interest from pharmaceutical andWith the Methyleneaziridines 3

medicinal chemists due to their biological activitieEhe synthetic entry 3 product 1 yield of 1/%°
- - 1 3a la 69
7\ A\ 2 3b 1b 75
R/Q H/Q 3 3c 1c 74
I | 4 3d 1d 87
. 5 3e le 43
R = Pyridine (o-, m-, p-) 6 3f 1 78
1 2 7 3g 19 74

methodologies for these pyrroles are divided into two major  2The reaction of3 (0.3 mmol) with4a (0.6 mmol) was carried out in

categories: (1) pyridine derivatives, having an alkyl chain with a the presence of 30 mol % Pd(Rfptwithout solvent at 120C for 3 days

1,4-diketone functional group at the ortho, meta, or para position, in a pressure vial under Ar atmosphefésolated yield based o8.

are synthesized first, and then they are converted to the corre-scheme 1

sponding pyrroles through the standard procedti(sthe coupling 0 o o o o

reaction betweern-metallopyrroles and halopyridines (or vice @Am @)I\Me Me)‘\@/u\Me Nq)LMe

versa) under the Kumada, Negishi, and other conditions gives the N s = A

desired product$.? Catalytic hydrogenation df gives pyrrolidine de 4 de

derivatives2.4 l
We report herein an entirely new approach for the synthesis of

Me Me Me Me
1 (eq 1). The palladium-catalyzed reaction of the methyleneaziri- B B o B y@
dines3 with o-acetylpyridineda gave theo-pyridinylpyrrolesl in 7 i N/\ Y Me /\“‘ N N\/ I N -
1h 1i 1j 1k

4b

good to high yields. Not onlg- but alsom- andp-acetylpyridines N
and related substrates can be used as the starting acetyl derivatives.
The results of the reaction ofa with 3, having various R Table 2. Palladium-Catalyzed Reactions of Various
substituents, are summarized in Table 1. Acetylpyridines 4b—d and Acetylpyrazine 4e with 3b?
" entry 4 product 1 yield of 1/%°
e
o
B 30 mol% Pd(PPhs) N 1 4b 1h 72
_ + i‘N Me % ~ lN o 5 4c 1i 88
>N R 3 4d 1 72
3 4a 1 4 4e 1k 96
3a; R = CH,Ph 1a; R = CHyPh aThe reaction of3b (0.3 mmol) with4 (0.6 mmol) was carried out in
iL’; ,I: ;}C[SX(MC)P}‘ :2‘ ,'i - }C[CHX(MC)P}‘ the presence of 30 mol % Pd(Pfhwithout solvent at 120C for 3 days.
3d; R = CH(Me)Cyclohexyl 1d: R = CH(Me)Cyclohexyl blsolated yield based o8b.
3e; R = CH,Ph(p-Cl) 1¢; R = CH,Ph(p-Cl)
TR IO L OMe IR = I CHOH e reaction of3e bearing an electron-withdrawing functional group

gavelein a moderate yield (entry 5). Furthermore, the reactions
The reaction of 1-benzyl-2-methyleneaziridirga,(0.3 mmol) of 3f and3g proceeded smoothly, produciigandlgin 78% and
with o-acetylpyridine 4a, 0.6 mmol) in the presence of 30 mol %  74% vyields, respectively (entries 6 and 7).

of Pd(PPh)4 proceeded smoothly at 12C without solvent to give We extended the new methodology to synthesizenthend
the corresponding-pyridinylpyrrole 1a in 69% vyield (entry 1). p-pyridinylpyrroles and related compountis—k (Scheme 1, Table
Other catalysts, such as ffdbay-CHCls, Pd(OAc), and Pt(PP¥),, 2). The reaction oBb with the m- and p-pyridine derivatives4b

did not promote the reaction at all. In the absence of the palladium and 4¢, afforded1h and 1i in 72% and 88% yield, respectively
catalyst, the reaction did not proceed at all, indicating that the (entries 1 and 2). Similarly4d and 4e gave the corresponding
palladium catalyst is essential to make the above transformation pyrroleslj and1k, respectively, in good to high yields (entries 3
feasible. In the presence of additional phosphine ligands, such asand 4).

dppe, dppb, P(OBy) and extra PP} unsatisfactory results were A plausible mechanism is shown in Scheme 2. The oxidative
obtained. Normally, 2 equiv af-acetylpyridine was used. When 1  insertion of Pd(0) into am-carbon-hydrogen bond ob-acetyl-
equiv of4awas used, the yield dfa decreased to 55%. Likewise,  pyridine 4a produces the hydridopalladium spect&sor its oxa-

the reactions o8b, 3c, and3d proceeded smoothly to afforth, m-allyl structureb’), and then the hydropalladation ®fvith 5 takes

1c, and1d, respectively, in good to high yields (entries2). The place as shown if. Reductive elimination of palladium may then
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Scheme 2. Plausible Mechanism for the Formation of
o-Pyridinylpyrrole 1

Pd(0)

o]
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' k"
o N W/ \ 7/
N / s 5
R

occur to afford the intermediafé and Pd(0) species. Subsequent
cyclization affords the intermediat®, and elimination of HO
producesl (see also the Supporting Information and ref 6).

The fact that not only the- but also then andp-acetylpyridines

palladation to the &C double bond o8 is proposed (eq ) The
presence of a ketone group in the pertinent positio @fould
make it possible to lead to the ring-closing reacti@n= 8).

R
R! o] > o] R!

Pd H Pd 4)
= A, - R%Q% - RWRZ

R R?
1
NC. R EDG N

s 4+ .F Pd
H—-Epe — = 5)
CN

H-Po\ R

We have developed a simple and efficient method for the
synthesis of various pyridinylpyrroles using palladium catalyst.
Moderate to good yields of the products are obtained in all cases,

and a wide range of acetyl aromatics and hetarenes can be used as

a starting material, which makes it feasible to synthesize biologically
very important pyridinylpyrrole derivatives and related compounds.

Supporting Information Available: Experimental procedures and
spectral data for all compounds. This material is available free of charge
via the Internet at http://pubs.acs.org.
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